翻訳と辞書 |
geodesic curvature : ウィキペディア英語版 | geodesic curvature In Riemannian geometry, the geodesic curvature of a curve measures how far the curve is from being a geodesic. In a given manifold , the geodesic curvature is just the usual curvature of (see below), but when is restricted to lie on a submanifold of (e.g. for curves on surfaces), geodesic curvature refers to the curvature of in and it is different in general from the curvature of in the ambient manifold . The (ambient) curvature of depends on two factors: the curvature of the submanifold in the direction of (the normal curvature ), which depends only from the direction of the curve, and the curvature of seen in (the geodesic curvature ), which is a second order quantity. The relation between these is . In particular geodesics on have zero geodesic curvature (they are "straight"), so that , which explains why they appear to be curved in ambient space whenever the submanifold is. ==Definition== Consider a curve in a manifold , parametrized by arclength, with unit tangent vector . Its curvature is the norm of the covariant derivative of : . If lies on , the geodesic curvature is the norm of the projection of the covariant derivative on the tangent space to the submanifold. Conversely the normal curvature is the norm of the projection of on the normal bundle to the submanifold at the point considered. If the ambient manifold is the euclidean space , then the covariant derivative is just the usual derivative .
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「geodesic curvature」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|